Answer:
The width is
![(-5+√(77))\ yd](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1b98v6thlprvn0kc4op9ef28wlt6gv0gkh.png)
Explanation:
Let
x-----> the length of rectangle
y-----> the width of rectangle
we know that
The area of rectangle is equal to
![A=xy](https://img.qammunity.org/2020/formulas/mathematics/middle-school/92fnf84e6el1b8awjzmjadlyo48pjjzxuy.png)
![A=52\ yd^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7dbqw2kp95tt7xz2wvvwo2odbcwo9lnlnw.png)
so
------> equation A
-----> equation B
substitute equation B in equation A
![y^(2)+10y-52=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uqn6p8gqai2e3c2rhkt7ka3mrre7728r73.png)
Solve the quadratic equation
The formula to solve a quadratic equation of the form
is equal to
![x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}](https://img.qammunity.org/2020/formulas/mathematics/high-school/gln51xb9bal8vny301mdetxf6tthe7p2sg.png)
in this problem we have
![y^(2)+10y-52=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uqn6p8gqai2e3c2rhkt7ka3mrre7728r73.png)
so
![a=1\\b=10\\c=-52](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jyysx586d6qcodgzr6g0dh4gnobdghp1vp.png)
substitute in the formula
![y=\frac{-10(+/-)\sqrt{10^(2)-4(1)(-52)}} {2(1)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fegqzrydixpexoklc5pf8l32dmj75jcvnj.png)
![y=\frac{-10(+/-)√(308)} {2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qlhsbs3lhybe6z1yz79ffb5p0lue5alrbh.png)
-------> the solution is the positive value
![y2=(-10(-)2√(77))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k2bery41ebu05zk71mxtbqhqyvb350tfxx.png)
The width is
![(-10(+)2√(77))/(2)\ yd=(-5+√(77))\ yd](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vs5l1b3zdcsr9tiulk3hexdgnr092iz23o.png)