Answer:
![=((64)/(3)\pi-16√(3)) in^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/4jjsmayi2egu8bt0pthuha3rxx76pqi14o.png)
Explanation:
Area of segment equals area of sector minus area of isosceles triangle.
![=(\theta)/(360)* \pi r^2 -(1)/(2) r^2 \sin(\theta)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5ma9r36e9y0uj25ofd56qmm2l8wv6h5xxi.png)
Given; the length of chord,
![d=8√(3) in.](https://img.qammunity.org/2020/formulas/mathematics/high-school/mvfl3egx23cymg1fofa2ooe773ag2q3j2g.png)
and the angle of the sector,
.
We can use the formula for calculating the length of a chord to find the radius of the circle.
![d=2r\sin((\theta)/(2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/vcxm631agqkpenjnp7xoxkd39uo0n4lk5f.png)
![8√(3)=2r\sin(60\degree)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nlhpu0895p64ns1k480tzriz8zqb02otvx.png)
![8√(3)=2r((√(3))/(2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/kpogykipx3ibekkpc5e3rf7xnt527uvxr5.png)
![\Rightarrow r=8in.](https://img.qammunity.org/2020/formulas/mathematics/high-school/g859y32noxhoqdylz45kjyxkrvsoj6omdt.png)
Area of segment
![=(120)/(360)* \pi * 8^2-(1)/(2)* 8^2\sin(120\degree)](https://img.qammunity.org/2020/formulas/mathematics/high-school/64ksp49xgaem4yaxx74uvmfa9e7ebhvnqc.png)
![=((64)/(3)\pi-16√(3)) in^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/4jjsmayi2egu8bt0pthuha3rxx76pqi14o.png)