199k views
5 votes
Given: △KLM, KM=48, LD=16
LD⊥KM, NOPS - rectangle NO:OP=5:9 Find: NO, OP

Given: △KLM, KM=48, LD=16 LD⊥KM, NOPS - rectangle NO:OP=5:9 Find: NO, OP-example-1

1 Answer

5 votes

Answer:

NO = 10 and OP = 18

Explanation:

Given: KM = 48 , LD = 16 , NO : OP = 5 : 9 and NOPS is rectangle.

To find: Value of NO and OP

Let the value of NO and OP = 5x and 9x

frst we prove ΔKLD is similar to ΔKON and ΔMLD is similar to ΔMPS

In ΔKLD and ΔKON

∠KDL = ∠KNO = 90° ( corresponding angles )

∠DKL = ∠NKO ( common Angle )

ΔKLD is similar to ΔKON by AA similarity rule.


(KD)/(KN)=(LD)/(ON)

subtract 1 from both sides


(KD)/(KN)-1=(LD)/(ON)-1


(KD-KN)/(KN)=(LD-ON)/(ON)

by substituting value from figure,


(ND)/(KN)=(16-5x)/(5x)


ND=((16-5x)/(5x))* KN ..................... (1)

In ΔMLD and ΔMPS

∠MDL = ∠MSP = 90° ( corresponding angles )

∠DML = ∠SMP ( common Angle )

ΔMLD is similar to ΔMPS by AA similarity rule.


(MD)/(SM)=(LD)/(PS)

subtract 1 from both sides


(MD)/(SM)-1=(LD)/(PS)-1


(MD-SM)/(SM)=(LD-PS)/(PS)

by sustituting value from figure,


(DS)/(SM)=(16-5x)/(5x)


DS=((16-5x)/(5x))* SM ..................... (2)

Add eqn. (1) & (2), we get


ND+DS=((16-5x)/(5x))* KN + ((16-5x)/(5x))* SM


NS=((16-5x)/(5x))(KN+SM)


NS=((16-5x)/(5x))(KM-NS) ( from figure KN + SM = KM - NS)

substitute given values,


9x=((16-5x)/(5x))(48-9x)


9x * 5x=16*48+16*(-9x)-5x*48-5x*(-9x)


45x^2=768-144x-240x+45x^2


45x^2-45x^2=768-384x


768-384x=0


384x=768


x=(768)/(384)

x = 2

NO = 5x = 5 × 2 = 10

OP = 9x = 9 × 2 = 18

User Darkzangel
by
6.1k points