Answer:
Part 1) The minimum value is
Part 2) The x-intercepts are -2 and 5
Part 3) The zeros of the function are -9 and -8
Part 4) The minimum value is
![(-3,2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3hvfv2bc0bjmgm39e03qvu8gsbniy2dhjt.png)
Explanation:
Part 1) we have
![g(x)=x^(2)-10x+16](https://img.qammunity.org/2020/formulas/mathematics/high-school/xc7na78u0y6u1xoo4m0qh56u3h2g5rhybk.png)
we know that
The equation of a vertical parabola in vertex form is equal to
![y=a(x-h)^(2)+k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yubnz8asd396x2vyp3ylxb6kuv3e7wbgiy.png)
where
(h,k) is the vertex
if a>0---> the the parabola open upward (vertex is a minimum)
If a<0---> the the parabola open downward (vertex is a maximum)
Convert to vertex form
![g(x)-16=x^(2)-10x](https://img.qammunity.org/2020/formulas/mathematics/high-school/2b299yzn8610a36l595n8yk19fgvjirx8x.png)
![g(x)-16+25=x^(2)-10x+25](https://img.qammunity.org/2020/formulas/mathematics/high-school/6ho0jajwhm4w6qxawsbjvyb3du7ug42olh.png)
![g(x)+9=x^(2)-10x+25](https://img.qammunity.org/2020/formulas/mathematics/high-school/xwpg51dws12sq01ww59nanr370940ydmfp.png)
![g(x)+9=(x-5)^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/sqbup70vi99va508ntbm885p8b7aofxcyk.png)
------> vertex form
The vertex is the point
the parabola open upward (vertex is a minimum)
Part 2) we have
![f(x)=x^(2)-3x-10](https://img.qammunity.org/2020/formulas/mathematics/high-school/zerkdi5rd193rp289f0da6ymwdbtleirnz.png)
we know that
The x-intercepts are the values of x when the value of the function is equal to zero
so
equate the equation to zero
![x^(2)-3x-10=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/7w9n423ft6umi1zhb409rcw43g1cux3hsx.png)
The formula to solve a quadratic equation of the form
is equal to
![x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}](https://img.qammunity.org/2020/formulas/mathematics/high-school/gln51xb9bal8vny301mdetxf6tthe7p2sg.png)
in this problem we have
![x^(2)-3x-10=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/7w9n423ft6umi1zhb409rcw43g1cux3hsx.png)
so
![a=1\\b=-3\\c=-10](https://img.qammunity.org/2020/formulas/mathematics/high-school/h0eeyey6th9si88fp7wxx5rvftnacrilcz.png)
substitute in the formula
![x=\frac{-(-3)(+/-)\sqrt{-3^(2)-4(1)(-10)}} {2(1)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/xft975zqgtb0wvizvtsnno2ke0e4y438dv.png)
![x=\frac{3(+/-)√(49)} {2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/m9gjy7ykn2t3j1yhni8apmjw6tmq3scwle.png)
![x=\frac{3(+/-)7} {2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/90tu6tuvzacq3qpt4nceken3hgifodidup.png)
![x=\frac{3(+)7} {2}=5](https://img.qammunity.org/2020/formulas/mathematics/high-school/s32k99xo8jdzs5q34mj412z7clavk0fqih.png)
![x=\frac{3(-)7} {2}=-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/bz4khd7k4h4okdgd8i02xs9n0plu4kq30g.png)
Part 3) we have
![f(x)=x^(2)+17x+72](https://img.qammunity.org/2020/formulas/mathematics/high-school/rhvh5vn2f0tu53ydieg3msttuet1k7tmol.png)
we know that
The zeros of the function are the values of x when the value of the function is equal to zero
so
equate the equation to zero
![x^(2)+17x+72=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/q2l0la48q81ernvl7tszcw6vf8dfl94n53.png)
The formula to solve a quadratic equation of the form
is equal to
![x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}](https://img.qammunity.org/2020/formulas/mathematics/high-school/gln51xb9bal8vny301mdetxf6tthe7p2sg.png)
in this problem we have
![x^(2)+17x+72=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/q2l0la48q81ernvl7tszcw6vf8dfl94n53.png)
so
![a=1\\b=17\\c=72](https://img.qammunity.org/2020/formulas/mathematics/high-school/2myck2e5a56b3fwujoo6tgensvbjqaqjr1.png)
substitute in the formula
![x=\frac{-17(+/-)\sqrt{17^(2)-4(1)(72)}} {2(1)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/zdfqmqc28robigvlx9siq4qfba79gmt4qb.png)
![x=\frac{-17(+/-)√(1)} {2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/wsyha3fne4uizzv8x37iiff6rm1slsy7ik.png)
![x=\frac{-17(+/-)1} {2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/nbdmerib0y18ozbd87wkdl4ot1efqcdoya.png)
![x=\frac{-17(+)1} {2}=-8](https://img.qammunity.org/2020/formulas/mathematics/high-school/d5gqjcq0y4tunvcf2env1auufshhau3lcv.png)
![x=\frac{-17(-)1} {2}=-9](https://img.qammunity.org/2020/formulas/mathematics/high-school/rz55oknx4e063phkh4g5igr6sln4bes87u.png)
Part 4) we have
![f(x)=x^(2)+6x+11](https://img.qammunity.org/2020/formulas/mathematics/high-school/zg4jvfgl73wj7jw0igsic8l2jly2kdbd4p.png)
we know that
The equation of a vertical parabola in vertex form is equal to
![y=a(x-h)^(2)+k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yubnz8asd396x2vyp3ylxb6kuv3e7wbgiy.png)
where
(h,k) is the vertex
if a>0---> the the parabola open upward (vertex is a minimum)
If a<0---> the the parabola open downward (vertex is a maximum)
Convert to vertex form
![f(x)-11=x^(2)+6x](https://img.qammunity.org/2020/formulas/mathematics/high-school/hjx41579wwb7kfnulhgvc3mdmz0407axvw.png)
![f(x)-11+9=x^(2)+6x+9](https://img.qammunity.org/2020/formulas/mathematics/high-school/cw6xqir48zf8rfndnkkfa2lp7mvsexrclb.png)
![f(x)-2=x^(2)+6x+9](https://img.qammunity.org/2020/formulas/mathematics/high-school/wqo7hrdqotj6rbj9zrojbt4kq2hofwyujc.png)
![f(x)-2=(x+3)^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l4y8ok44ila9cttc5jmbh5gumayz4gvu79.png)
![f(x)=(x+3)^(2)+2](https://img.qammunity.org/2020/formulas/mathematics/high-school/fnqbljpzkmjm1hzsq7jftwdiciuachzplc.png)
The vertex is the point
the parabola open upward (vertex is a minimum)