Answer:
True. The slant asymptote is
![y=x-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/yjjto9nksgzd110x48p5gafi0iaho101tu.png)
Explanation:
A slant asymptote is the equation of a line of the form y = mx + b
Where m is the slope and b is the cut point with the y axis.
To find these asymptotes, you must make the following limit:
![m = \lim_(x \to \infty)(f(x))/(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kbrv7wrgtyapnouudhuymobbaph9a6h28e.png)
![b = \lim_(x \to \infty)[f(x) -mx]](https://img.qammunity.org/2020/formulas/mathematics/high-school/qwydxu0870c3fqm2yi2r2qx132idp9nypl.png)
With the given function f(x) we make the first limit to find the slope of the line:
![m= \lim_(x \to \infty)((x^3-2x^2+x-4)/(x^2+1))/(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4qx52oxlo72030sh5ags5ph8tnjmhe8jqj.png)
![m= \lim_(x \to \infty)(x^3-2x^2+x-4)/(x^3+x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ntpmxudyffn0sgnijuimokdamqj31sr7pm.png)
We divide each term between
![x ^ 3](https://img.qammunity.org/2020/formulas/mathematics/high-school/kv33momvj8idcd4ei44wuyyurcxr7qmcmr.png)
![m= \lim_(x \to \infty)(1-0 + 0 -0)/(1+0)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w81s2v48imvnt48wsvcjssfmu9w5ozk5j5.png)
![m = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k7lrbgxf1du1kcww21jm7pwqddclr5uume.png)
Now we solve the second limit
![b = \lim_(x \to \infty)[(x^3-2x^2+x-4)/(x^2+1)-x]\\\\b = \lim_(x \to \infty)[(x^3-2x^2+x-4 -[x^3+x])/(x^2+1)]\\\\b = \lim_(x \to \infty)[(-2x^2-4)/(x^2+1)]\\\\b = \lim_(x \to \infty)[(-2(x^2)/(x^2)-(4)/(x^2))/((x^2)/(x^2)+(1)/(x^2))]\\\\\\b = -2](https://img.qammunity.org/2020/formulas/mathematics/high-school/m2k37gxah7kk5m28uvrylyjsphe0d38p0y.png)
Finally: The slant asymptote is
![y = x-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/8afqkzukxos7qebxwwlr2ngz6an9juv31a.png)