Answer:
The correct options are D and E.
Explanation:
The given equation is
![x^2+4x-9=5x+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t0fnaniordx670u1jx8p60ri4o50to32gu.png)
Subtract 5x+5 from both the sides.
![x^2+4x-9-5x-3=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ddl41vh8muvfj237c1qqpxsny58gy2gi34.png)
Combine like terms.
![x^2-x-12=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/91m7r7lp3kb1wu4v38muij5ghjoo8zj7g9.png)
The middle term can be written as -4x+3x.
![x^2-4x+3x-12=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rrtb32qe983kuysr62rzwnsk8qo0x3siro.png)
![x(x-4)+3(x-4)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yawqq5p044yxycl0905n8sr9kgc07kiprh.png)
![(x-4)(x+3)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dbtda78fsnzz5xsc4yosvk7xzd25shu1cs.png)
Using zero product property, equate each factor equal to 0.
![x-4=0\Rightarrow z=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n0w0atr1mhldcxpn2mbff9y43q6jyo7srd.png)
![x+3=0\Rightarrow z=-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n4vnby5sor1e0g1v3vv5g7g2u62xpkko2n.png)
Therefore correct options are D and E.