Answer:
![a.\:\:-1,1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n0xxl8dle66kbigw9jvfpzy7eix39rdk7d.png)
Explanation:
The given polynomial function is;
![f(x)=2x^4-x^3+x-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/151ami3phns2hi2ne1xr2zwbbuiv9imrph.png)
According to the rational roots theorem, the possible rational roots are
![\pm (1)/(2) ,\pm1,\pm2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i8i0r3pl18e4zzqce8fflkbhv8my9du9pu.png)
We now use the remainder theorem to obtain;
![f(1)=2(1)^4-(1)^3+(1)-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o8hwjwqupwncbjzg94jiy64m86gext76al.png)
![f(1)=2-1+1-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wptqbbrlvu0vjqzfmdfkikjs1f6xk6qoks.png)
![f(1)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ziu98vslos4uxqnu21hakygqya9vbs4yg9.png)
This implies that,
is a zero.
Also,
![f(-1)=2(-1)^4-(-1)^3+(-1)-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aujsjtz94wodnvom2p7xpsqisg9fqu42r7.png)
![f(-1)=2+1-1-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wyhsgip3612b9lttt2sgey7izh7sg25o6y.png)
![f(-1)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/shh5rpjr010yhhhudxccnovv96ae4rmugc.png)
This means that,
is also a zero.
![f((1)/(2))=-(7)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/17i1hww13kfypx1zfy8pl0mo0oihjupi7c.png)
![f(-(1)/(2))=-(7)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c9y8v0g67aeu9gju572ch7ak632itbkjh4.png)
![f(2)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8121pkvde9raca56ailbn9iazggrmtezv6.png)
![f(-2)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ueb3v3btb063c9snxvkdcwhaox77f9m5bb.png)
Hence the zeros are
![-1,1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kauidgrasvpt3ey534qyaokzgikwd6x3sc.png)