208k views
5 votes
Simplify 3√875x⁵y⁹

User Geovanny
by
5.8k points

2 Answers

0 votes

Answer:

5∛7 ×
x^(5/3) × y³ is answer.

Explanation:

we have to simplify the given expression 3√875x⁵y⁹

we use exponent rule for radical
\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}

we use this rule is this expression

3√875x⁵y⁹ = ∛875 × ∛x⁵ × ∛y⁹

∛875 = ∛125 ×7 = 5 ∛ 7

using exponent rule for radical
\sqrt[n]{x^(m)}=x^(m/n) we get


\sqrt[3]{x^(5) } =x^(5/3)

similarly


\sqrt[3]{y^(9) } = y^(9/3)

putting these values in given expression we get

3√875x⁵y⁹ = 5∛7 ×
x^(5/3) × y³

therefore, our expression simplifies to 5∛7 ×
x^(5/3) × y³
.

User Ivan Studenikin
by
5.4k points
2 votes

Answer:


5\sqrt[3]{7}*y^3*x^{(5)/(3)}

Explanation:

We are asked to simplify the radical expression:
\sqrt[3]{875x^5y^9}.

Using exponent rule for radical
\sqrt[n]{ab} =\sqrt[n]{a}*\sqrt[n]{b} we can rewrite our expression as:


\sqrt[3]{875x^5y^9}=\sqrt[3]{875}*\sqrt[3]{x^5}*\sqrt[3]{y^9}


\sqrt[3]{875}=\sqrt[3]{125*7}=5\sqrt[3]{7}

Using exponent rules for radical
\sqrt[n]{a^m}=a^(m)/(n) we will get,


\sqrt[3]{x^5}=(x^5)^{(1)/(3)}=x^{(5)/(3)}

Using exponent rules for radical
\sqrt[n]{a^m}=a^(m)/(n) we will get,


\sqrt[3]{y^9}=(y^9)^3=y^{(9)/(3)}=y^3

Upon substituting these values in our expression we will get,


\sqrt[3]{x^5}*\sqrt[3]{y^9}=5\sqrt[3]{7}*x^{(5)/(3)}*y^3

Therefore, our radical expression simplifies to
5\sqrt[3]{7}*y^3*x^{(5)/(3)}.

User Karam Mohamed
by
5.2k points