208k views
5 votes
Simplify 3√875x⁵y⁹

User Geovanny
by
8.3k points

2 Answers

0 votes

Answer:

5∛7 ×
x^(5/3) × y³ is answer.

Explanation:

we have to simplify the given expression 3√875x⁵y⁹

we use exponent rule for radical
\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}

we use this rule is this expression

3√875x⁵y⁹ = ∛875 × ∛x⁵ × ∛y⁹

∛875 = ∛125 ×7 = 5 ∛ 7

using exponent rule for radical
\sqrt[n]{x^(m)}=x^(m/n) we get


\sqrt[3]{x^(5) } =x^(5/3)

similarly


\sqrt[3]{y^(9) } = y^(9/3)

putting these values in given expression we get

3√875x⁵y⁹ = 5∛7 ×
x^(5/3) × y³

therefore, our expression simplifies to 5∛7 ×
x^(5/3) × y³
.

User Ivan Studenikin
by
8.2k points
2 votes

Answer:


5\sqrt[3]{7}*y^3*x^{(5)/(3)}

Explanation:

We are asked to simplify the radical expression:
\sqrt[3]{875x^5y^9}.

Using exponent rule for radical
\sqrt[n]{ab} =\sqrt[n]{a}*\sqrt[n]{b} we can rewrite our expression as:


\sqrt[3]{875x^5y^9}=\sqrt[3]{875}*\sqrt[3]{x^5}*\sqrt[3]{y^9}


\sqrt[3]{875}=\sqrt[3]{125*7}=5\sqrt[3]{7}

Using exponent rules for radical
\sqrt[n]{a^m}=a^(m)/(n) we will get,


\sqrt[3]{x^5}=(x^5)^{(1)/(3)}=x^{(5)/(3)}

Using exponent rules for radical
\sqrt[n]{a^m}=a^(m)/(n) we will get,


\sqrt[3]{y^9}=(y^9)^3=y^{(9)/(3)}=y^3

Upon substituting these values in our expression we will get,


\sqrt[3]{x^5}*\sqrt[3]{y^9}=5\sqrt[3]{7}*x^{(5)/(3)}*y^3

Therefore, our radical expression simplifies to
5\sqrt[3]{7}*y^3*x^{(5)/(3)}.

User Karam Mohamed
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories