99.9k views
5 votes
Which of the following is the complete list of roots for the polynomial function f(x)=(x2+6+8)(x2+6x+13)

2 Answers

3 votes

Answer:

x=i√14,−i√14,−3+2i,−3−2i

Explanation:

Set the function equal to 0 and solve for x.

User Yissel
by
8.6k points
3 votes

Answer:

The zeros of given polynomial function
f(x)=(x^2+6x+8)(x^2+6x+13) are -4 , -2
-3+2i,-3-2i

Explanation:

Given polynomial,
f(x)=(x^2+6x+8)(x^2+6x+13)

We have to find the zeros of the polynomial.

Consider the given polynomial,
f(x)=(x^2+6x+8)(x^2+6x+13)

Zeros are the point where the value of function is equal to 0 that is


f(x)=(x^2+6x+8)(x^2+6x+13)=0

Using , zero product property ,
a.b=0 \Rightarrow a=0 \ or\ b=0

we have,


f(x)=(x^2+6x+8)=0 or
f(x)=(x^2+6x+13)=0

We solve it one by one,

consider
f(x)=(x^2+6x+8)=0

we solve the quadratic using middle term splitting method,

6x can be written as 4x + 2x ,


x^2+4x+2x+8=0

taking x common from first two term and 2 common from last two terms, we have,


\Rightarrow x(x+4)+2(x+4)=0


\Rightarrow (x+4)(x+2)=0

Again using zero product rule, we have,


\Rightarrow (x+4)=0 or
\Rightarrow (x+2)=0


\Rightarrow x=-4 or
\Rightarrow x=-2

Now, consider the second quadratic equation
f(x)=(x^2+6x+13)=0


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=1,\:b=6,\:c=13:\quad x_(1,\:2)=(-6\pm √(6^2-4\cdot \:1\cdot \:13))/(2\cdot \:1)


x=-3+2i,\:x=-3-2i

Thus, the zeros of given polynomial function
f(x)=(x^2+6x+8)(x^2+6x+13) are -4 , -2
-3+2i,-3-2i

User Johan Leino
by
8.1k points