Answer:
![y√(2) + 3y√(2) = 4y√(2)](https://img.qammunity.org/2020/formulas/mathematics/college/qhmhjp38s2mns69op4uhn5s7848957oo1m.png)
Explanation:
To add or subtract radicals, you need to simplify the radicals and then add the radicals
![√(2y^2) + y√(18)](https://img.qammunity.org/2020/formulas/mathematics/college/wlzuc0ysscqab27boef1d5crsuz4c7zyfr.png)
First simplify
![√(2y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/xkd2wz0vx9qtidbxmu06egd38ag3wcwrkg.png)
![√(2y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/xkd2wz0vx9qtidbxmu06egd38ag3wcwrkg.png)
![√(2y^2) = √(2) \ √(y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/o6ry3k9drsmwdmdja4cappfp33lq1dvegn.png)
![√(2) \ √(y^2)](https://img.qammunity.org/2020/formulas/mathematics/college/8dymldorw8tpxgvdcvi8g5k04qqla1xota.png)
![√(y^2) = y](https://img.qammunity.org/2020/formulas/mathematics/college/4xwbdn8qezkosge6olcbfc3mwfmm9tv63z.png)
![√(2) \ y](https://img.qammunity.org/2020/formulas/mathematics/college/9npuq7uw7nlsgd2nl3pc1n9ezkrycjcg8v.png)
OR
![y√(2)](https://img.qammunity.org/2020/formulas/mathematics/college/disyemk93913eb9174jt1ods8dtbi1mdtn.png)
Second simplify
![√(18)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mqix0di27iha5gj8xcmydbg3cloxv6ggqe.png)
To simplify
you need to find two radicals that =
when you multiply them. One radical needs to be a perfect square and the other needs to be a non perfect square.
![√(18)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mqix0di27iha5gj8xcmydbg3cloxv6ggqe.png)
![√(9) * √(2) = √(18)](https://img.qammunity.org/2020/formulas/mathematics/college/fhgiokwrnq5yp25yrtti48w5c7rmecfsuh.png)
![√(9) * √(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/liih48mgmv131gky7wcequ8j9oj3zqc1uq.png)
![√(9) √(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/d5ijhtp581y4g3ticfqb1gbzws39l85qcq.png)
![3 √(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/29xfsghess7kho7ch8dpwtcgw3vdc4wlel.png)
![3 y√(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/vkq7t6io27tu85byzne4liwb42jkwyzqd9.png)
Now put it all together
![y√(2) + 3y√(2) = 4y√(2)](https://img.qammunity.org/2020/formulas/mathematics/college/qhmhjp38s2mns69op4uhn5s7848957oo1m.png)