231k views
18 votes
What choice is a solution to the system of equations? y=2x-3 y-9=-x

User Homebase
by
8.2k points

2 Answers

14 votes

Answer:


(4,5)\ or\ x=4,y=5

Explanation:


We\ are\ given:\\y=2x-3\\y-9=-x\\Now,\ lets\ separate\ all\ the\ constant\ terms\ to\ the\ RHS\ and\ the\ variable\\ terms\ to\ the\ LHS.\\Hence,\\y-2x=-3\\y+x=9\\By\ subtracting\ the\ two\ equations:\\(y-2x)-(y+x)=(-3)-(9)\\Hence\ lets\ simplify\ this\ main\ equation: \\y-2x-(y+x)=-3-9\\y-2x-y-x=-12\\-3x=-12\\x=(-12)/(-3)=4\\\\Now,\ lets\ consider\ the\ second\ equation\ in\ the\ solution:\\y-9=-x\\Substituting\ x=4,\\y-9=-(4)\\y-9=-4\\y=-4+9\\y=5\\


Now,\\We\ get\ the\ solution\ to\ this\ system\ of\ equations:\\x=4,y=5\\By\ putting\ this\ as\ a\ co-ordinate\ pair (x,y):\\(4,5)

User Omar Aflak
by
8.2k points
12 votes

Answer:

The solution of the system of equations will be:


y=5,\:x=4

Explanation:

Given the system of equation


\begin{bmatrix}y=2x-3\\ y-9=-x\end{bmatrix}

Arrange equation variables for elimination


\begin{bmatrix}y-2x=-3\\ y+x=9\end{bmatrix}

so


y+x=9


-


\underline{y-2x=-3}


3x=12

so the system of equations becomes


\begin{bmatrix}y-2x=-3\\ 3x=12\end{bmatrix}

solve 3x=12 for x


3x=12

Divide both sides by 3


(3x)/(3)=(12)/(3)


x=4


\mathrm{For\:}y-2x=-3\mathrm{\:plug\:in\:}x=4


y-2\cdot \:4=-3


y-8=-3

Add 8 to both sides


y-8+8=-3+8


y=5

Thus, the solution of the system of equations will be:


y=5,\:x=4

User Donshikin
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories