Answer:
The width which gives the greatest area is 7.5 yd
Explanation:
This is an application of differential calculus. Given the area as a function of the width, we simply need to differentiate the function with respect to x and equate to zero which yields; 15-2x=0 since the slope of the graph is zero at the turning points. Solving for x yields, x=7.5 which indeed maximizes the area of the pen