119k views
5 votes
Which is equivalent to 5√1,215x

User Asra
by
5.5k points

2 Answers

7 votes

Answer with explanation

The expression whose equivalent expression we have to find is:


\Rightarrow 5 √(1215 x)\\\\\text{Following are the equivalent expression}\\\\1.\rightarrow 5 √(243 * 5* x)\\\\2.\rightarrow 5 *√(3* 3* 3* 3* 3* 5 * x)\\\\3.\rightarrow 5 * 3* 3 * √(15 x)\\\\ 4.\rightarrow 45 √(15 x)\\\\5. \rightarrow 45 * (15)^{(1)/(2)} * x^{(1)/(2)

User Rajnesh
by
5.7k points
4 votes

Answer:
5(1,215x)^{(1)/(2)}

Step-by-step explanation:}

To solve this problem you can apply the proccedure shown below:

1. By definition, you have that:


\sqrt[n]{a}=a^{{(1)/(n)}

2. Therefore, keeping the above on mind, you can find an equivalent expression of
5√(1,215x) as following:


5√(1,215x)=5(1,215x)^{(1)/(2)}

3. Then, an equivalent expression is:


5(1,215x)^{(1)/(2)}

User Casraf
by
5.5k points