Answer:
36 million is the answer.
Explanation:
In the question given parameters are population in 1995 = 32 million
Population in 1997 = 34 million
Exponential growth formula is
![P = Ae^(kt)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pul247a35rlcoyuoodrrqlhndxg4haqnz0.png)
And we have to find out the population in 2003.
Here From this formula initial population in 1995
![P=Ae^(k* 0)=32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zxqmkbg2n3uv3o0x3kqs2603z6gz04ud8d.png)
Or P = A = 32 million
Now population in 1997
![P=32e^(k* 2)=34](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wrw1dz1c5v67xxtwc0fyflye4ynlve951z.png)
![e^(k* 2)=34/32=17/16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/un8k87agev7ubw7j1utd129ljwul90ddyu.png)
![log(e^(2k))=log((17)/(16))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x8aemcd7k723stttzw945izfs0f0bufcaw.png)
![2k=log17-log16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ztuj11yiher6vwa6dkflb0tn6131d5p3j4.png)
![2k=0.0263](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ck2db86jawdqkpab264c3rrvar7arsr8b.png)
![k=0.0131](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mj38x3jsil3752f9j0yto7uwcpvh60284e.png)
Now Population in 2003
![P=32e^(.0131* 8)=32e^(0.105)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gpd07z53pi3fsvsrg0ha6pq2z8ly94788g.png)
P = 32×1.11 = 35.54 million ≅ 36 million