Answer:
The correct option is 4. The value of R² is 1.000.
Explanation:
The table lists the distance d (in ft) above the ground for an object dropped in a vacuum from a height of 500 feet. The time t (in sec) is the time after the object has been released.
The general form of quadratic regression is
![y=ax^2+bx+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/681jf4lsjwxd9lmjd27bh82m6tps71a0gl.png)
Use technology, we get
![a=-16, b=-5.1901\cdot10^(-15),c=500,R^2=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u3rg6bis6f28lpod12i78xa1r78kc81tcd.png)
The required quadratic regression is
![y=-16x^2+-5.1901\cdot10^(-15)x+500](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ynx9gpv2q08u0w3uwr4uaj37t52aqys29g.png)
The value of R² is 1.000. Therefore the correct option is 4.