2.5k views
4 votes
Find the flux of b = 2xyax + z2ya.y + 3x2y'1z over the surface defined by z = 1, 0 < x < 1) 0 < y < 2. 3

User Airs
by
8.8k points

1 Answer

1 vote

I'm assuming
\vec b is the vector field I've suggested in my comment,


\vec b=(2xy,z^2y,3x^2y)

Parameterize the given surface - call it
\mathcal S - by


\vec r(u,v)=(u,v,1)

with
0\le u\le1 and
0\le v\le2. The flux is given by the surface integral


\displaystyle\iint_(\mathcal S)\vec b\cdot\mathrm d\vec S=\iint_(\mathcal S)\vec b\cdot\vec n\,\mathrm dS

where the surface element is


\vec n\,\mathrm dS=(\vec r_u*\vec r_v)/(\|\vec r_u*\vec r_v\|)\|\vec r_u*\vec r_v\|\,\mathrm du\,\mathrm dv=(\vec r_u*\vec r_v)\,\mathrm du\,\mathrm dv

(or use
\vec r_v*\vec r_u, depending on the orientation of the surface)

We have


\vec r_v*\vec r_u=(0,0,1)


\vec b=(2uv,v,3u^2v)

so the surface integral reduces to


\displaystyle\iint_(\mathcal S)\vec b\cdot\mathrm d\vec S=\int_(u=0)^(u=1)\int_(v=0)^(v=2)3u^2v\,\mathrm dv\,\mathrm du=2

(or possibly -2, again depending on the orientation of
\mathcal S)

User Faraz Khonsari
by
7.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories