2.5k views
4 votes
Find the flux of b = 2xyax + z2ya.y + 3x2y'1z over the surface defined by z = 1, 0 < x < 1) 0 < y < 2. 3

User Airs
by
8.8k points

1 Answer

1 vote

I'm assuming
\vec b is the vector field I've suggested in my comment,


\vec b=(2xy,z^2y,3x^2y)

Parameterize the given surface - call it
\mathcal S - by


\vec r(u,v)=(u,v,1)

with
0\le u\le1 and
0\le v\le2. The flux is given by the surface integral


\displaystyle\iint_(\mathcal S)\vec b\cdot\mathrm d\vec S=\iint_(\mathcal S)\vec b\cdot\vec n\,\mathrm dS

where the surface element is


\vec n\,\mathrm dS=(\vec r_u*\vec r_v)/(\|\vec r_u*\vec r_v\|)\|\vec r_u*\vec r_v\|\,\mathrm du\,\mathrm dv=(\vec r_u*\vec r_v)\,\mathrm du\,\mathrm dv

(or use
\vec r_v*\vec r_u, depending on the orientation of the surface)

We have


\vec r_v*\vec r_u=(0,0,1)


\vec b=(2uv,v,3u^2v)

so the surface integral reduces to


\displaystyle\iint_(\mathcal S)\vec b\cdot\mathrm d\vec S=\int_(u=0)^(u=1)\int_(v=0)^(v=2)3u^2v\,\mathrm dv\,\mathrm du=2

(or possibly -2, again depending on the orientation of
\mathcal S)

User Faraz Khonsari
by
7.8k points