203k views
0 votes
- f:R → R
f(x + 7) = 3x - 6
g(2x + 1) = x2-1
= (f-1og)(5) = ?

- f:R → R f(x + 7) = 3x - 6 g(2x + 1) = x2-1 = (f-1og)(5) = ?-example-1
User Kevinbrink
by
4.7k points

1 Answer

7 votes

Answer:


f^(-1)\,\circ \,g(5) = 10

Explanation:

Let
f(x+7) = 3\cdot x -6 and
g(2\cdot x +1) = x^(2)-1, we proceed to derive
f(x) and
g(x) by algebraic means:

(i)
f(x+7) = 3\cdot x -6

1)
f(x+7) = 3\cdot x -6 Given

2)
f(x+7) = 3\cdot (x+0) - 6 Modulative property

3)
f(x+7) = 3\cdot [(x+7) +(-7)]-6 Existence of additive inverse/Associative property

4)
f(x+7) = 3\cdot (x+7) +3\cdot (-7)-6 Distributive property

5)
f(x+7) = 3\cdot (x+7) -21-6
a\cdot (-b) = -a\cdot b

6)
f(x+7) = 3\cdot (x+7) -27 Definition of subtraction

7)
f(x) = 3\cdot x - 27 Composition of functions/Result

(ii)
g(2\cdot x + 1) = x^(2)-1

1)
g(2\cdot x + 1) = x^(2)-1 Given

2)
g(2\cdot x + 1) = (x\cdot 1)^(2)-1 Modulative property

3)
g(2\cdot x +1) = [(2\cdot x)\cdot 2^(-1)]^(2)-1 Existence of additive inverse/Commutative and associative properties

4)
g(2\cdot x +1) = (2\cdot x)^(2)\cdot 2^(-2)-1
a^(c)\cdot b^(c)/
(a^(b))^(c) = a^(b\cdot c)

5)
g(2\cdot x + 1) = ((2\cdot x)^(2))/(4)-1 Definitions of division and power

6)
g(2\cdot x + 1) = ((2\cdot x + 0)^(2))/(4) -1 Modulative property

7)
g(2\cdot x +1) = ([(2\cdot x + 1)+(-1)]^(2))/(4) -1 Existence of additive inverse/Associative property

8)
g(2\cdot x + 1) = ((2\cdot x + 1)^(2)+2\cdot (2\cdot x + 1)\cdot (-1)+(-1)^(2))/(4) -1 Perfect square trinomial

9)
g(2\cdot x + 1) = ((2\cdot x + 1)^(2))/(4)+([2\cdot (-1)]\cdot (2\cdot x + 1))/(4) +((-1)^(2))/(4)-1 Addition of homogeneous fractions.

10)
g(x) = (x^(2))/(4)-(2\cdot x)/(4) + (1)/(4)-1 Composition of functions/
a\cdot (-b) = -a\cdot b

11)
g(x) = (x^(2))/(4)-(x)/(2)-(3)/(4) Definitions of division and subtraction/Result

Now we find the inverse of
f(x):

1)
f = 3\cdot x - 27 Given

2)
f + 27 = (3\cdot x - 27)+27 Compatibility with addition

3)
f+ 27 = 3\cdot x +[27+(-27)] Definition of substraction/Commutative and associative properties

4)
f+27 = 3\cdot x Existence of additive inverse/Modulative property

5)
(f+27) \cdot 3^(-1) = (3\cdot 3^(-1))\cdot x Compatibility with multiplication/Commutative and associative properties

6)
(f+27)\cdot 3^(-1) = x Existence of multiplicative inverse/Modulative property

7)
f^(-1) (x) = (x+27)/(3) Symmetrical property/Notation/Result

Finally, we proceed to calculate
f^(-1)\,\circ \, g (5):

1)
f^(-1) (x) = (x+27)/(3),
g(x) = (x^(2))/(4)-(x)/(2)-(3)/(4) Given

2)
f^(-1)\,\circ\, g(x) = ((x^(2))/(4)-(x)/(2)-(3)/(4)+27)/(3) Composition of functions

3)
f^(-1)\,\circ \,g(5) = 10 Result

User Rczajka
by
4.8k points