Answer:
![=216y^9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7845nsf4504bp9gslz6mfo7f6txw8ap6yw.png)
Explanation:
the expression is:
![(9x^2y^3)(12x^(-3)y^5)(2xy)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5qxdub2r2nrayuno4opog65f5k4fikyugf.png)
the first step is to multiply all the coefficients:
![9*12*2=216](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s32e5psaarxhwa2lhztgqis4fjxaslkewd.png)
and as for the variables, to multiply them we must add the exponents, that is, the result for x will be:
![x^(2-3+1)=x^0=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fqc96ufrs21jihr51hr8htiig7oji15gls.png)
so there will be no x in our result.
adding the exponents for the y variable:
![y^(3+5+1)=y^9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rzzs6ioe03gkxd1f12rshgame3q1s4dzhx.png)
The result is the multiplied coefficients and the variables after we add the exponents they in the original expression:
![(9x^2y^3)(12x^(-3)y^5)(2xy)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5qxdub2r2nrayuno4opog65f5k4fikyugf.png)
![=216y^9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7845nsf4504bp9gslz6mfo7f6txw8ap6yw.png)
which is option B