3.1k views
4 votes
What is the solution of x^2-1/x^2+5x+4< or equal to 0

2 Answers

3 votes

there is not a solution

User Asolace
by
5.0k points
4 votes

Answer:

(-4,-1) U (-1,1]

Explanation:

x^2-1/x^2+5x+4< or equal to 0


(x^2-1)/(x^2+5x+4) \leq 0

LEts factor top and bottom


x^2+5x+4= (x+4)(x+1)

Now we factor x^2-1 using
a^2-b^2=(a+b)(a-b)


x^2-1^2=(x+1)(x-1)

now we find the x values that makes the denominator 0


(x+4)(x+1)=0

x+4=0, x=-4

x+1=0, x=-1


((x+1)(x-1) )/((x+4)(x+1)) =0

multiply the denominator on both sides

cancel out x+1 at the top and bottom

x-1 =0, x=1

We got 3 x values

x=-4, -1, 1

using the x values we make 4 intervals

(-∞, -4), (-4,-1) (-1,1] and [1,∞)

LEts pick a random number from each interval and check with the inequality

(-∞, -4) pick -5


((-5)^2-1)/((-5)^2+5(-5)+4) \leq 0


(24)/(4) \leq 0 false

(-4,-1) pick -3


((-3)^2-1)/((-3)^2+5(-3)+4) \leq 0


(8)/(-1) \leq 0 True

(-1,1] pick 0


((0)^2-1)/((0)^2+5(0)+4) \leq 0


(-1)/(4) \leq 0 True

[1,∞) pick -2


((2)^2-1)/((2)^2+5(2)+4) \leq 0


(3)/(18) \leq 0 false

solution are the intervals that satisfies our inequality

(-4,-1) U (-1,1]

User Milen Kovachev
by
6.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.