Answer:
(-4,-1) U (-1,1]
Explanation:
x^2-1/x^2+5x+4< or equal to 0
![(x^2-1)/(x^2+5x+4) \leq 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ua21wl0a9p3gwdoh1t1vzqozgz8rxuizu0.png)
LEts factor top and bottom
![x^2+5x+4= (x+4)(x+1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/td1bd662st82kgimlt3mdppyzrkcvg797v.png)
Now we factor x^2-1 using
![a^2-b^2=(a+b)(a-b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/mpelom9ylwg2nq2fvp5mq21fxoygocnfpy.png)
![x^2-1^2=(x+1)(x-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5chlvn9y7vhfbu18e1jv60yjtgfmpoekmg.png)
now we find the x values that makes the denominator 0
![(x+4)(x+1)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/m84z72y0d7vt5yrdymcds87ecmq7ixtb9u.png)
x+4=0, x=-4
x+1=0, x=-1
![((x+1)(x-1) )/((x+4)(x+1)) =0](https://img.qammunity.org/2020/formulas/mathematics/high-school/2zs84d0y5owlwoimwbx1lzkx5669glmecr.png)
multiply the denominator on both sides
cancel out x+1 at the top and bottom
x-1 =0, x=1
We got 3 x values
x=-4, -1, 1
using the x values we make 4 intervals
(-∞, -4), (-4,-1) (-1,1] and [1,∞)
LEts pick a random number from each interval and check with the inequality
(-∞, -4) pick -5
![((-5)^2-1)/((-5)^2+5(-5)+4) \leq 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/gy301m60ijj23htjr2hg0t7j77vimpxo1h.png)
false
(-4,-1) pick -3
![((-3)^2-1)/((-3)^2+5(-3)+4) \leq 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/4xow9gyeiq68fe688egizj3m3cas0qkqo8.png)
True
(-1,1] pick 0
![((0)^2-1)/((0)^2+5(0)+4) \leq 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ij6dn9kn6v010j6eeecl977m94n0r431dh.png)
True
[1,∞) pick -2
![((2)^2-1)/((2)^2+5(2)+4) \leq 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/33mdhd5lnl0r8dzk4vytq250gyg9g8as5d.png)
false
solution are the intervals that satisfies our inequality
(-4,-1) U (-1,1]