3.1k views
4 votes
What is the solution of x^2-1/x^2+5x+4< or equal to 0

2 Answers

3 votes

there is not a solution

User Asolace
by
8.1k points
4 votes

Answer:

(-4,-1) U (-1,1]

Explanation:

x^2-1/x^2+5x+4< or equal to 0


(x^2-1)/(x^2+5x+4) \leq 0

LEts factor top and bottom


x^2+5x+4= (x+4)(x+1)

Now we factor x^2-1 using
a^2-b^2=(a+b)(a-b)


x^2-1^2=(x+1)(x-1)

now we find the x values that makes the denominator 0


(x+4)(x+1)=0

x+4=0, x=-4

x+1=0, x=-1


((x+1)(x-1) )/((x+4)(x+1)) =0

multiply the denominator on both sides

cancel out x+1 at the top and bottom

x-1 =0, x=1

We got 3 x values

x=-4, -1, 1

using the x values we make 4 intervals

(-∞, -4), (-4,-1) (-1,1] and [1,∞)

LEts pick a random number from each interval and check with the inequality

(-∞, -4) pick -5


((-5)^2-1)/((-5)^2+5(-5)+4) \leq 0


(24)/(4) \leq 0 false

(-4,-1) pick -3


((-3)^2-1)/((-3)^2+5(-3)+4) \leq 0


(8)/(-1) \leq 0 True

(-1,1] pick 0


((0)^2-1)/((0)^2+5(0)+4) \leq 0


(-1)/(4) \leq 0 True

[1,∞) pick -2


((2)^2-1)/((2)^2+5(2)+4) \leq 0


(3)/(18) \leq 0 false

solution are the intervals that satisfies our inequality

(-4,-1) U (-1,1]

User Milen Kovachev
by
9.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories