9.7k views
4 votes
Exponents math help!

Exponents math help!-example-1

2 Answers

5 votes
ANSWER


\frac{ {m}^(2) {n}^( - 5) }{ {m}^( 7) {n}^( - 17) } = \frac{ {n}^(12) }{ {m}^(5) }



EXPLANATION


The given expression is


\frac{ {m}^(2) {n}^( - 5) }{ {m}^( 7) {n}^( - 17) }


Recall the following law of exponents,


\frac{ {a}^(m) }{ {a}^(n) } = {a}^(m - n)


We apply this law to obtain:




\frac{ {m}^(2) {n}^( - 5) }{ {m}^( 7) {n}^( - 17) } = {m}^(2 - 7) {n}^( - 5 - - 17)


This simplifies to,


\frac{ {m}^(2) {n}^( - 5) }{ {m}^( 7) {n}^( - 17) } = {m}^( 2- 7) {n}^( - 5 + 17)


\frac{ {m}^(2) {n}^( - 5) }{ {m}^( 7) {n}^( - 17) } = {m}^( - 5) {n}^( 12)

Recall again that,



{a}^( - m) = \frac{1}{ {a}^(m) }

This implies that,



\frac{ {m}^(2) {n}^( - 5) }{ {m}^( 7) {n}^( - 17) } = \frac{ {n}^(12) }{ {m}^(5) }

The correct answer is D.
User Kushal Paudyal
by
8.0k points
4 votes

Answer:

n¹²/m⁵

Explanation:

In indices; 1/a = a⁻¹

1/a⁻² = a²

So, with this information we can simplify the expression as shown bellow;

(m²n⁻⁵)/(m⁷n⁻¹⁷) = m²n⁻⁵m⁻⁷n¹⁷

= m²⁻⁷n⁻⁵⁺¹⁷

= m⁻⁵n¹²

= (n¹²)/(m⁵)

= n¹²/m⁵

The answer is D.

User Ian Dunn
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories