Answer:
70 is the required coefficient.
Explanation:
We have been given
![(x+y)^8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hhxz7z7cnu5bj7lq2cvcptqsob8t3g0zfh.png)
Using the general formula which is:
![(x+y)^n=^nC_(0)x^n\cdot y^0+^nC_(1)x^(n-1)y^1+^nC_[2}x^(n-2)y^2+........+^nC_(n)x^0y^n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hsqnc855vg0us4ea1l3btj7np29j5yheul.png)
Here, n=8 now, substituting the values in the formula we get:
![(x+y)^8=^8C_(0)x^8y^0+^8C_(1)x^7y^1+^8C_(2)x^6y^2+^8C_(3)x^5y^3+^8C_(4)x^4y^4+....](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8uwb4m2aoh2xjvqv5p9bo0ym8l9h4gkhat.png)
So, we want coefficient of
![x^4y^4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8enk8mxy5xyof3hx215g3wtys4e6em1og1.png)
Coefficient is multiple with the term we need to find coefficient of.
is coefficient of
![x^4y^4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8enk8mxy5xyof3hx215g3wtys4e6em1og1.png)
Using
![^8C_(4)=(8!)/(4!(8-4)!)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/skwjkg3zruwksc4j1w70ur4iz0mt9kh8hb.png)
![\Rightarrow 70](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fqnjul0lahixonwo3yarjjm54xd61g2wy2.png)