11. Divide both sides by 2:
![2\left(\frac19\right)^x=\frac2{81}\implies\left(\frac19\right)^x=\frac1{81}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m65grphjkvcc4er20a775w4vun8qo7q1hk.png)
The solution has to be
because
![\left(\frac19\right)^2=(1^2)/(9^2)=\frac1{81}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3j0tqgvkl1qplgjozxdxgqe40dq5cr2fra.png)
12. Divide both sides by 2:
![2\left(\frac4{13}\right)^x=(32)/(169)\implies\left(\frac4{13}\right)^x=(16)/(169)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vsps4yzdq72tfljw1j5rzx2iwmq9wrcl7l.png)
On the right side we have two perfect squares:
![\left(\frac4{13}\right)^x=(4^2)/(13^2)=\left(\frac4{13}\right)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/16qvdkp0d6n3m31fuxmk1sqt99xrl5b7ks.png)
so again the answer is
.
14. Divide both sides by 8:
![8\left(\frac23\right)^x=4\left((16)/(27)\right)\implies\left(\frac23\right)^x=\frac8{27}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/erbpsfpm8hnlz8m2hvfjws6qodau2u8vk0.png)
On the right we have perfect cubes:
![\left(\frac23\right)^x=(2^3)/(3^3)=\left(\frac23\right)^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4xpgp2ck0h85peeor8knh7ivvdwsmculdd.png)
so
.
15.
![\frac25\left(\frac25\right)^x=\frac8{125}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9z1f1wr1mb6pe7xhcwihkx5rtf702sk82c.png)
We could divide both sides by 2/5 (or multiply both sides by 5/2, as the writing on your paper suggests). Then
![\left(\frac25\right)^x=(40)/(250)=\frac4{25}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/itpzr1awrmsmyx45251b0iymwqs7bci7km.png)
The right side has two perfect squares:
![\left(\frac25\right)^x=(2^2)/(5^2)=\left(\frac25\right)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fwe4dzpiihcae6l47zoxqf30nqn22aw9nt.png)
so that
.
Another way to do this is to rewrite the left side as
![\frac25\left(\frac25\right)^x=\left(\frac25\right)^1\left(\frac25\right)^x=\left(\frac25\right)^(x+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/knh1mvgauuf1agzg3zhas9o6iupxnmpupu.png)
Meanwhile, on the right we have two perfect cubes:
![\left(\frac25\right)^(x+1)=(2^3)/(5^3)=\left(\frac25\right)^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6w76o4c364oasw5wiikaiwtw14odmd7u2b.png)
so that
, or
, as before.