Answer:
Velocity of ball B after impact is
and ball A is
![0.711v_0](https://img.qammunity.org/2022/formulas/engineering/college/idjsxsho0pb7qocrp6luw2czgfkswqpglp.png)
Step-by-step explanation:
= Initial velocity of ball A
![v_A=v_0\cos45^(\circ)](https://img.qammunity.org/2022/formulas/engineering/college/v2lgpltv6d42xw2yufmiesn73oxxgb6ocz.png)
= Initial velocity of ball B = 0
= Final velocity of ball A
= Final velocity of ball B
= Coefficient of restitution = 0.8
From the conservation of momentum along the normal we have
![mv_A+mv_B=m(v_A)_n'+mv_B'\\\Rightarrow v_0\cos45^(\circ)+0=(v_A)_n'+v_B'\\\Rightarrow (v_A)_n'+v_B'=(1)/(√(2))v_0](https://img.qammunity.org/2022/formulas/engineering/college/orp0vsylawsff34dlko3jvmfboe8tv17e9.png)
Coefficient of restitution is given by
![e=(v_B'-(v_A)_n')/(v_A-v_B)\\\Rightarrow 0.8=(v_B'-(v_A)_n')/(v_0\cos45^(\circ))\\\Rightarrow v_B'-(v_A)_n'=(0.8)/(√(2))v_0](https://img.qammunity.org/2022/formulas/engineering/college/l45wmks3jlhdq2x0mhsopd58359sstq63n.png)
![(v_A)_n'+v_B'=(1)/(√(2))v_0](https://img.qammunity.org/2022/formulas/engineering/college/pt2x50ytxokugf7i0t4c9byjnyz9thu84y.png)
![v_B'-(v_A)_n'=(0.8)/(√(2))v_0](https://img.qammunity.org/2022/formulas/engineering/college/8dmd9f2r9d1n0ah9fpf05b9ehfqzl0eavi.png)
Adding the above two equations we get
![2v_B'=(1.8)/(√(2))v_0\\\Rightarrow v_B'=(0.9)/(√(2))v_0](https://img.qammunity.org/2022/formulas/engineering/college/yjtaabingbo2odurxj1y94cvi6pdea7sf6.png)
![\boldsymbol{\therefore v_B'=0.6364v_0}](https://img.qammunity.org/2022/formulas/engineering/college/l1c851gk18s94mexel06md50i0mwwjmvqr.png)
![(v_A)_n'=(1)/(√(2))v_0-0.6364v_0\\\Rightarrow (v_A)_n'=0.07071v_0](https://img.qammunity.org/2022/formulas/engineering/college/5819scpcdakd1gbyzki6hd4tbng2olpeq5.png)
From the conservation of momentum along the plane of contact we have
![(v_A)_t'=(v_A)_t=v_0\sin45^(\circ)\\\Rightarrow (v_A)_t'=(v_0)/(√(2))](https://img.qammunity.org/2022/formulas/engineering/college/4h4a24tj5ybg8ieg9sjbc2eksf6jceesga.png)
![v_A'=√((v_A)_t'^2+(v_A)_n'^2)\\\Rightarrow v_A'=\sqrt{((v_0)/(√(2)))^2+(0.07071v_0)^2}\\\Rightarrow \boldsymbol{v_A'=0.711v_0}](https://img.qammunity.org/2022/formulas/engineering/college/yv3c5j07chsamw5a3m34i7fp36two36l1a.png)
Velocity of ball B after impact is
and ball A is
.