Answer : The activation energy of the reaction is,
![17.285* 10^4kJ/mole](https://img.qammunity.org/2020/formulas/chemistry/high-school/93qzsdmjo0dr5l45m68ni6v52nnvtmv84t.png)
Solution :
The relation between the rate constant the activation energy is,
![\log (K_2)/(K_1)=(Ea)/(2.303* R)* [(1)/(T_1)-(1)/(T_2)]](https://img.qammunity.org/2020/formulas/chemistry/high-school/ggk6vasjx91pdnajaj81ch8aqcw1i6hzdw.png)
where,
= initial rate constant =
![4.55* 10^(-5)L/mole\text{ s}](https://img.qammunity.org/2020/formulas/chemistry/high-school/wto1xlgre1ahrp5freac370o4giqtyw8ew.png)
= final rate constant =
![8.75* 10^(-3)L/mole\text{ s}](https://img.qammunity.org/2020/formulas/chemistry/high-school/55uv0p4ipi9j4cdwmp2mayeq40n1am3rnm.png)
= initial temperature =
![195^oC=273+195=468K](https://img.qammunity.org/2020/formulas/chemistry/high-school/73702rlupeu3y3qeqjgmg9b2fsd0kqd9o8.png)
= final temperature =
![258^oC=273+258=531K](https://img.qammunity.org/2020/formulas/chemistry/high-school/1jk4bvf8zk4q9cbbgg35rd6nclot4x41gb.png)
R = gas constant = 8.314 kJ/moleK
Ea = activation energy
Now put all the given values in the above formula, we get the activation energy.
![\log \frac{8.75* 10^(-3)L/mole\text{ s}}{4.55* 10^(-5)L/mole\text{ s}}=(Ea)/(2.303* (8.314kJ/moleK))* [(1)/(468K)-(1)/(531K)]](https://img.qammunity.org/2020/formulas/chemistry/high-school/bnfmraobs3h1jx0p8tdsj8kcmho9mi47r0.png)
![Ea=17.285* 10^4kJ/mole](https://img.qammunity.org/2020/formulas/chemistry/high-school/sd1ztu4ntoryvtb9jf8ldb1oqexhwkphya.png)
Therefore, the activation energy of the reaction is,
![17.285* 10^4kJ/mole](https://img.qammunity.org/2020/formulas/chemistry/high-school/93qzsdmjo0dr5l45m68ni6v52nnvtmv84t.png)