Answer:
Maximum value of z = 21
Minimum value of z = -9
Explanation:
We have to maximize/minimize the given equation for the given constraints as,
x ≥ -1
y ≤ -2x + 3
y ≥ -1
By using the graphing tool,
Corner points for the feasible region are,
A(-1, 5), B(-1, -1) and C(2, -1)
For A(-1, 5),
z = 4x + 5y = 4(-1) + 5(5)
= -4 + 25
= 21
For B(-1, -1),
z = 4(-1) + 5(-1)
= -4 - 5
= -9
For C(2, -1),
z = 4(2) + 5(-1)
= 8 - 5
= 3
Maximum value of z = 21
Minimum value of z = -9