Answer:
(1) the potential difference that stopped the proton is 1878.75 V
(2) the initial kinetic energy of the proton is 1878.75 eV
Step-by-step explanation:
Given;
initial speed of the proton, v = 600,000 m/s
mass of proton, m = 1.67 x 10⁻²⁷ kg
(1) The work done in bringing the proton to rest is given as;
![W = eV](https://img.qammunity.org/2022/formulas/physics/college/w6lmi6xhgudgmbx99qhskd6etnwqlzoszt.png)
Apply work energy theorem;
![K.E =W\\\\ (1)/(2) mv^2 = eV\\\\V = (mv^2)/(2e)](https://img.qammunity.org/2022/formulas/physics/college/kxsywrjta8uoxy0petggjli8egnzfemt3i.png)
where;
V is the potential difference
![V = (1.67* 10^(-27) *\ 600,000^2)/(2 \ * \ 1.6 * 10^(-19)) \\\\V = 1878.75 \ V](https://img.qammunity.org/2022/formulas/physics/college/rri289v8mpv37kpzxtuopuup2rfouedb0o.png)
(2) the initial kinetic energy of the proton, in electron volts;
![K.E = (1)/(2) mv^2\\\\K.E = (1)/(2) * \ 1.67* 10^(-27) * 600,000^2 = 3.006 * 10^(-16) \ J\\\\K.E = (3.006 * 10^(-16) \ J \ \ eV)/(1.6 * 10^(-19) \ J) = 1878.75 \ eV](https://img.qammunity.org/2022/formulas/physics/college/293gq5z2l5jmofnfqocrp3jiqybef9f39x.png)