191k views
0 votes
Find the directional derivative of the function at the given point in the direction of the vector v. f(x, y, z) = xyz , (3, 3, 9), v = −1, −2, 2 duf(3, 3, 9)

User Mjschultz
by
5.8k points

1 Answer

7 votes

The derivative of
f(x,y,z) in the direction of a vector
\mathbf u is


\\abla_(\mathbf u)f=\\abla f\cdot(\mathbf u)/(\|\mathbf u\|)

With
f(x,y,z)=xyz, we get


\\abla f=(yz,xz,xy)

and
\mathbf u=(-1,-2,2),


\|\mathbf u\|=√((-1)^2+(-2)^2+2^2)=3

Then


\\abla_((-1,-2,2))f(3,3,9)=(27,27,9)\cdot\frac{(-1,-2,2)}3=-21

User Sherisse
by
6.2k points