8.2k views
5 votes
Find the magnitude of wx for w(-3 5 4) and x(9 5 3)

2 Answers

3 votes

Answer:

Magnitude =
\sqrt({145).

Explanation:

Given : wx for w(-3 5 4) and x(9 5 3).

To find : find the magnitude of wx .

Solution : We have given that w(-3 5 4) and x(9 5 3).

Magnitude =
\sqrt({x_(2) -x_(1) )^(2)+({y_(2) -y_(1) )^(2) +({z_(2) -z_(1))^(2).


x_(1)= -3 ,
x_(2) = 9 ,
y_(1) = 5 ,
y_(2) = 5,
z_(1) = 4,
z_(2) = 3.

Plugging the values in above formula ,

Magnitude =
\sqrt({9 - (-3))^(2)+({5-5 )^(2) +({3 -4)^(2).

Magnitude =
\sqrt({12)^(2)+({0 )^(2) +({-1^(2).

Magnitude =
\sqrt({144+0+1).

Magnitude =
\sqrt({145).

Therefore, Magnitude =
\sqrt({145).

User Denny Lee
by
4.9k points
3 votes

Answer: Magnitude of wx is
√(145)

Explanation:

Since we have given that


w(-3,5,4)=-3\hat{i}+5\hat{j}+4\hat{k}\\\\x(9,5,3)=9\hat{i}+5\hat{j}+3\hat{k}

Now, first we will find 'wx':


wx=Initial-Final\\\\wx=(9+3)\hat{i}+(5-5)\hat{j}+(3-4)\hat{k}\\\\wx=12\hat{i}-1\hat{k}

We need to find the "magnitude":


\mid wx\mid=√(12^2+1^2)=√(144+1)=√(145)

Hence, Magnitude of wx is
√(145)

User Risel
by
5.3k points