8.2k views
5 votes
Find the magnitude of wx for w(-3 5 4) and x(9 5 3)

2 Answers

3 votes

Answer:

Magnitude =
\sqrt({145).

Explanation:

Given : wx for w(-3 5 4) and x(9 5 3).

To find : find the magnitude of wx .

Solution : We have given that w(-3 5 4) and x(9 5 3).

Magnitude =
\sqrt({x_(2) -x_(1) )^(2)+({y_(2) -y_(1) )^(2) +({z_(2) -z_(1))^(2).


x_(1)= -3 ,
x_(2) = 9 ,
y_(1) = 5 ,
y_(2) = 5,
z_(1) = 4,
z_(2) = 3.

Plugging the values in above formula ,

Magnitude =
\sqrt({9 - (-3))^(2)+({5-5 )^(2) +({3 -4)^(2).

Magnitude =
\sqrt({12)^(2)+({0 )^(2) +({-1^(2).

Magnitude =
\sqrt({144+0+1).

Magnitude =
\sqrt({145).

Therefore, Magnitude =
\sqrt({145).

User Denny Lee
by
8.3k points
3 votes

Answer: Magnitude of wx is
√(145)

Explanation:

Since we have given that


w(-3,5,4)=-3\hat{i}+5\hat{j}+4\hat{k}\\\\x(9,5,3)=9\hat{i}+5\hat{j}+3\hat{k}

Now, first we will find 'wx':


wx=Initial-Final\\\\wx=(9+3)\hat{i}+(5-5)\hat{j}+(3-4)\hat{k}\\\\wx=12\hat{i}-1\hat{k}

We need to find the "magnitude":


\mid wx\mid=√(12^2+1^2)=√(144+1)=√(145)

Hence, Magnitude of wx is
√(145)

User Risel
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories