136k views
4 votes
Prove that 2017(2018^9+2018^8+…+2018^2+2019+1)=2018^10+2017

User Jiten
by
4.3k points

2 Answers

3 votes

Answer:

2016

Explanation:

User Kajarigd
by
4.7k points
2 votes
let a=2018, we can rewrite the question into


(a-1)(a^9+a^8+...+a^2+a+2)\\=(a-1)(a^9+a^8+...+a^2+a+1)+(a-1)\\=a^(10)-1+a-1

substitute back a = 2018, obtained


{2018}^(10) + 2016
well, there is something wrong here
User Gina
by
5.3k points