Answer:
![F_r = 200N](https://img.qammunity.org/2022/formulas/engineering/college/cfjrw7z3u7wfvuf2g850ezyhfx9ooob85e.png)
Step-by-step explanation:
Given
Let the two forces be
![F_1 = 130N](https://img.qammunity.org/2022/formulas/engineering/college/ph5f580bberx0kwvils7z9bxqajfyufxp0.png)
![F_2 = 110N](https://img.qammunity.org/2022/formulas/engineering/college/uc1nh49tl4rl4nwdhsxdc6vcggqeqj251q.png)
and
![\tan(\theta) = (12)/(5)](https://img.qammunity.org/2022/formulas/engineering/college/r9qwcw8zymcoqup46vf9150mnbref2ivgm.png)
Required
Determine the resultant force
Resultant force (Fr) is calculated using:
![F_r^2 = F_1^2 + F_2^2 + 2F_1F_2\cos(\theta)](https://img.qammunity.org/2022/formulas/engineering/college/z06b16dccmjaprxi028ahm77mcs4gd286t.png)
This means that we need to first calculate
![\cos(\theta)](https://img.qammunity.org/2022/formulas/engineering/college/tb3xvv3y6zsvhubk94637xqt0by9i5vd9n.png)
Given that:
![\tan(\theta) = (12)/(5)](https://img.qammunity.org/2022/formulas/engineering/college/r9qwcw8zymcoqup46vf9150mnbref2ivgm.png)
In trigonometry:
![\tan(\theta) = (Opposite)/(Adjacent)](https://img.qammunity.org/2022/formulas/engineering/college/8lgbuf2nmffde5u7m2zb7ij6ohweat9q88.png)
By comparing the above formula to
![\tan(\theta) = (12)/(5)](https://img.qammunity.org/2022/formulas/engineering/college/r9qwcw8zymcoqup46vf9150mnbref2ivgm.png)
![Opposite = 12](https://img.qammunity.org/2022/formulas/engineering/college/6uquh8harfbm07edaetiob6kc39hgczujt.png)
![Adjacent = 5](https://img.qammunity.org/2022/formulas/engineering/college/6xrmlz7y4k98gnjrr798z2674qlvm4n5e3.png)
The hypotenuse is calculated as thus:
![Hypotenuse^2 = Opposite^2 + Adjacent^2](https://img.qammunity.org/2022/formulas/engineering/college/7yg8teqao75m1wnjghvapwff1q7aq7b4q5.png)
![Hypotenuse^2 = 12^2 + 5^2](https://img.qammunity.org/2022/formulas/engineering/college/fxejbnns68828bxpc3sku6b6by7fu88qm0.png)
![Hypotenuse^2 = 144 + 25](https://img.qammunity.org/2022/formulas/engineering/college/aqido5j1ya6o05oaw3jbhiy9l02zf91glw.png)
![Hypotenuse^2 = 169](https://img.qammunity.org/2022/formulas/engineering/college/k3rgo96ua5ysz3asc81hfws62e6tfv6ec9.png)
![Hypotenuse = \sqrt{169](https://img.qammunity.org/2022/formulas/engineering/college/cd0q1ylmjjaksll3r2adtk2t4eg3f69bbn.png)
![Hypotenuse = 13](https://img.qammunity.org/2022/formulas/engineering/college/b1vt1gfyc52w9z6ejruzbzyrlonk7lzg87.png)
is then calculated using:
![\cos(\theta)= (Adjacent)/(Hypotenuse)](https://img.qammunity.org/2022/formulas/engineering/college/kbpx2mrcetjmgnws7nqd5l0n8c68h3cf3x.png)
![\cos(\theta)= (5)/(13)](https://img.qammunity.org/2022/formulas/engineering/college/phfxyupei0oje9pltvkwmr4ump903uf3cp.png)
Substitute values for
,
and
in
![F_r^2 = F_1^2 + F_2^2 + 2F_1F_2\cos(\theta)](https://img.qammunity.org/2022/formulas/engineering/college/z06b16dccmjaprxi028ahm77mcs4gd286t.png)
![F_r^2 = 130^2 + 110^2 + 2*130*110*(5)/(13)](https://img.qammunity.org/2022/formulas/engineering/college/4kqz92jtckjnusbmiu33z7br4phl2vigys.png)
![F_r^2 = 16900 + 12100 + 11000](https://img.qammunity.org/2022/formulas/engineering/college/hkaqrelao59yszt0576kbcn4datp1tktnt.png)
![F_r^2 = 40000](https://img.qammunity.org/2022/formulas/engineering/college/n0z13tjud8bdi8oigifjcm44jg4tispdjo.png)
Take square roots of both sides
![F_r = \sqrt{40000](https://img.qammunity.org/2022/formulas/engineering/college/crbf3wko0vlwihu2h5xdql3xivog0w3fyl.png)
![F_r = 200N](https://img.qammunity.org/2022/formulas/engineering/college/cfjrw7z3u7wfvuf2g850ezyhfx9ooob85e.png)
Hence, the resultant force is 200N