197k views
4 votes
Use
f(x) = x^(2) +1 with domain [0, ∞] and
g(x) = \sqrt[]{x-4} to find each of the following.

1.
[f^(-1) °
g^(-1)](x)

2.
[f °
g]^(-1) (x)

1 Answer

3 votes

Answer:

1.
(f^(-1)og^(-1)) (x) = \sqrt{x^(2)+3 }

2.
(f o g)^(-1) (x) = x + 3

Explanation:

f(x) =
x^(2) + 1

putting f (x) = y

y =
x^(2) + 1


x^(2) = ( y-1)

x =
(y - 1)^{(1)/(2) }

Therefore =
f^(-1)(x) =
(x-1)^{(1)/(2) }

g (x) =
√(x-4)

putting g(x) = y

y =
√(x-4)


y^(2) = (x-4)

x =
y^(2) + 4


g^(-1) (x) = x^(2) + 4

(
f^(-1) o
g^(-1)) x


(g^(-1)x -1)^{(1)/(2) } = \sqrt{x^(2) +3}

2. (f o g)(x) = (√x-4)²+1) = x-4+1

(f o g)(x) = x-3

Let y = x - 3

x = y + 3

Or
(f o g)^(-1)(x) = x + 3

User Juris
by
6.6k points