Answer:
The shortest length of the triangle is: 14
Hence, option B is correct.
Explanation:
Given the triangle with the lengths
Given that the perimeter of triangle = P = 57
We know that the perimeter of a triangle is the sum of the lengths of the sides of a triangle.
so
![P = (x+15)+(4x-7)+(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/7qd52retiwk8ftxku6m7z34i3roeyrlr58.png)
substitute P = 57
![57 = (x+15)+(4x-7)+(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/l4ivve1flw3lrhwakgl9xga8xm6aqr7d3o.png)
switch sides
![\left(x+15\right)+\left(4x-7\right)+\left(2x\right)=57](https://img.qammunity.org/2022/formulas/mathematics/college/c5m3f4a2ul7azjf83arffow6uwjgbpcp7w.png)
![x+15+4x-7+2x=57](https://img.qammunity.org/2022/formulas/mathematics/college/7krnwsyrdo3c10258j0pttxpyly8xj1zvs.png)
Group like terms
![x+4x+2x+15-7=57](https://img.qammunity.org/2022/formulas/mathematics/college/1y2afum5ju1ycxk3ix0j1n7q2h8x4ifv9y.png)
Add similar elements
![7x+15-7=57](https://img.qammunity.org/2022/formulas/mathematics/college/slzieodmy146qgy494fjg31pg5xue6eolq.png)
![7x=49](https://img.qammunity.org/2022/formulas/mathematics/college/47a72wbnqobfd149ey7jvnurbrw6k60p65.png)
divide both sides by 7
![(7x)/(7)=(49)/(7)](https://img.qammunity.org/2022/formulas/mathematics/college/z6hhhiwogtkjlorcwq5ne20comslye4ffu.png)
simplify
![x=7](https://img.qammunity.org/2022/formulas/mathematics/college/arpqhm2rcmx20zb2ql3h3z8i59crr3l6do.png)
Now, measuring the lengths by substituting x = 7
Therefore, the shortest length of the triangle is: 14
Hence, option B is correct.