158k views
5 votes
Which equation can be used to solve the matrix equation?

Which equation can be used to solve the matrix equation?-example-1
Which equation can be used to solve the matrix equation?-example-1
Which equation can be used to solve the matrix equation?-example-2
User Lvp
by
8.2k points

1 Answer

2 votes

Answer:

The correct option is 4.

Explanation:

The given matrix equation is


\begin{bmatrix}(1)/(2) & (-1)/(4)\\ 2 & -(3)/(4)\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}2 & -4\\ 1 & 6\end{bmatrix}

Let
A=\begin{bmatrix}(1)/(2) & (-1)/(4)\\ 2 & -(3)/(4)\end{bmatrix},
X=\begin{bmatrix}x\\ y\end{bmatrix} and
B=\begin{bmatrix}2 & -4\\ 1 & 6\end{bmatrix}

The given equation can be written as


AX=B

If
AX=B, then
X=A^(-1)B

It means we have to find the matrix A⁻¹ .


A=\begin{bmatrix}(1)/(2) & (-1)/(4)\\ 2 & -(3)/(4)\end{bmatrix}


|A|=(1)/(2)* (-3)/(4)-(-1)/(4)* 2=\frac{-3}[8}+(1)/(2)=(1)/(8)

If
P=\begin{bmatrix}a & b\\ c & d\end{bmatrix}, then
P^(-1)=(1)/(|P|)\begin{bmatrix}d &-b\\ -c & a\end{bmatrix}


A^(-1)=(1)/((1)/(8))\begin{bmatrix}-(3)/(4)& (1)/(4)\\ -2 &(1)/(2)\end{bmatrix}


A^(-1)=8\begin{bmatrix}-(3)/(4)& (1)/(4)\\ -2 &(1)/(2)\end{bmatrix}


A^(-1)=\begin{bmatrix}-6& 2\\ -16 &4\end{bmatrix}


X=A^(-1)B


\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}-6& 2\\ -16 &4\end{bmatrix}\begin{bmatrix}2 & -4\\ 1 & 6\end{bmatrix}

Therefore the correct option is 4.

User Ponsiva
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.