158k views
5 votes
Which equation can be used to solve the matrix equation?

Which equation can be used to solve the matrix equation?-example-1
Which equation can be used to solve the matrix equation?-example-1
Which equation can be used to solve the matrix equation?-example-2
User Lvp
by
4.7k points

1 Answer

2 votes

Answer:

The correct option is 4.

Explanation:

The given matrix equation is


\begin{bmatrix}(1)/(2) & (-1)/(4)\\ 2 & -(3)/(4)\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}2 & -4\\ 1 & 6\end{bmatrix}

Let
A=\begin{bmatrix}(1)/(2) & (-1)/(4)\\ 2 & -(3)/(4)\end{bmatrix},
X=\begin{bmatrix}x\\ y\end{bmatrix} and
B=\begin{bmatrix}2 & -4\\ 1 & 6\end{bmatrix}

The given equation can be written as


AX=B

If
AX=B, then
X=A^(-1)B

It means we have to find the matrix A⁻¹ .


A=\begin{bmatrix}(1)/(2) & (-1)/(4)\\ 2 & -(3)/(4)\end{bmatrix}


|A|=(1)/(2)* (-3)/(4)-(-1)/(4)* 2=\frac{-3}[8}+(1)/(2)=(1)/(8)

If
P=\begin{bmatrix}a & b\\ c & d\end{bmatrix}, then
P^(-1)=(1)/(|P|)\begin{bmatrix}d &-b\\ -c & a\end{bmatrix}


A^(-1)=(1)/((1)/(8))\begin{bmatrix}-(3)/(4)& (1)/(4)\\ -2 &(1)/(2)\end{bmatrix}


A^(-1)=8\begin{bmatrix}-(3)/(4)& (1)/(4)\\ -2 &(1)/(2)\end{bmatrix}


A^(-1)=\begin{bmatrix}-6& 2\\ -16 &4\end{bmatrix}


X=A^(-1)B


\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}-6& 2\\ -16 &4\end{bmatrix}\begin{bmatrix}2 & -4\\ 1 & 6\end{bmatrix}

Therefore the correct option is 4.

User Ponsiva
by
5.0k points