Answer:
The volume of the pyramid is
![1,260\ cm^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/954zlo0qbunq5xunoy2c6jeqmvapxdotr2.png)
Explanation:
we know that
The volume of the triangular pyramid is equal to
![V=(1)/(3)BH](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1npkck5tezb4g42bc6m0koc5jua6d5elt6.png)
where
B is the area of the triangular base
H is the height of the pyramid
step 1
Find the area of the base B
![B=(1)/(2)bh](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6g73e9bxfmbxjqvjxhzxfuevepqjf1dm5d.png)
we have
![b=14\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cb51b18wmtr4jo067zzbj2v7hxaczrfutt.png)
![h=18\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x8bro909gzncrtzqo1nprk9vk0lwwtqa68.png)
substitute
![B=(1)/(2)(14)(18)=126\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9uduyhho5tfdfexkhahv0ux7lvaplwog6x.png)
step 2
Find the volume
we have
![B=126\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4z6ox9e288vgowo9u2o708v66e334rxs7s.png)
![H=30\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1txccit8wtl1253ybyj5wpz85jmyla9flm.png)
substitute
![V=(1)/(3)BH](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1npkck5tezb4g42bc6m0koc5jua6d5elt6.png)
![V=(1)/(3)(126)(30)=1,260\ cm^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwcaedo39fudhiiieq2nc7zwo2tckpzkcp.png)