Answer:
B (3 - i)
Explanation:
To find the quotient of the complex numbers you must multiply the numerator and the denominator by the conjugate of the denominator
Example: The conjugate of (3 - i) is (3 + i)
![(8-6i)/(3-i) *(3+i)/(3+i)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ip28oxd9iu9l1lr91k3rcry4klnqusadtw.png)
![(3-i)(3+i)=9-i^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cysde5xqm7k69tl9o43y2mi0cot9i4fi2q.png)
![i^(2)=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r3bfv3k7sa7c0u2xu5mayqlao0fbah24lo.png)
So
![(3-i)(3+i)=9--1=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kxcet1w0x6o14pdo94z1fdf4ssvzoast09.png)
Denominator= 10
![(8-6i)(3+i)=24+8i-18i-6i^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yb383qg3txy5686qug05xbvrgg8rlixfa9.png)
![24-10i-6i^(2) =24-10i-6(-1)=24-10i+6=30-10i](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wip6du5udsj428jc548rqcwf0l90bsxhbt.png)
Numerator = 30 - 10i
Then
![(30-10i)/(10) =(30)/(10)-(10i)/(10) = 3 - i](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p61v3ndy50se5l20gzkem9qu0oteq3vmzq.png)
The correct answer is B