Answer:
The value of x is 94 cm.
Explanation:
Given information: VT=95.2 cm, VY=34 cm, and TK=168 cm.
Let the length of YK be y.
Since TY is angle bisector, therefore by triangle angle bisector theorem we get
![(95.2)/(34)=(168)/(y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x2pnvfl9pgds3fvfb9u9f7m10m1d3gxn0r.png)
![y=(168* 34)/(95.2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ivnq1zg7cz6gzgzhb75cs0glo8d9ytlvr7.png)
![y=60](https://img.qammunity.org/2020/formulas/mathematics/middle-school/evkeo3pdcm02j48zdrb11mdasspb4coend.png)
The length of YK is 60 cm.
The value of x is
![x=VK=VY+YK](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dlgbvsxceiqvzq67d4chijvkqsnbhfcr7l.png)
![x=34+60](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ytql4kaf3t5ouaw4yozazhubr8d0rgn6m8.png)
![x=94](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oq1n8rj6438smijg7lfu78kilymu3wurop.png)
Therefore the value of x is 94 cm.