ANSWER
![\frac{ {w}^(2) - 7w + 12}{ {w}^(2) + w - 20 }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2drjchwtcvt415cccsxeujaq7ydii1h4k1.png)
Step-by-step explanation
The given fraction is,
![(w - 3)/(w + 5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cukutfbl8fgws3foqwi3crdrv8nxu5sfsk.png)
To get an equivalent fraction, we multiply both the numerator and the denominator by the same quantity that will give us
w²+w-20
in the denominator.
This implies that,
![(w - 3)/(w + 5) = ((w - 3)(w - 4))/((w + 5)(w - 4))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vfquas75nn3hxwxa3onigg2guafdmhyf25.png)
We multiply out the numerators and denominators using the distributive property to obtain,
![(w - 3)/(w + 5) = \frac{ {w}^(2) - 4w - 3w + 12}{ {w}^(2) - 4w + 5w - 20 }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4oyw30qf8bjhoqeebvnj0i53oo6xrmol8k.png)
This simplifies to
![(w - 3)/(w + 5) = \frac{ {w}^(2) - 7w + 12}{ {w}^(2) + w - 20 }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kzqrajo18j9ue30tw1fh5ffjomapfc4d9i.png)