178k views
1 vote
Sin∅=√3-1/2 find approximate value of sec∅(sec∅+tan∅)/1+tan²∅​

User Nekkoru
by
3.9k points

1 Answer

12 votes

Answer:

The approximate value of
f(\theta) = (\sec \theta \cdot (\sec \theta+\tan \theta))/(1+\tan^(2)\theta) is 1.366.

Explanation:

Let
f(\theta) = (\sec \theta \cdot (\sec \theta+\tan \theta))/(1+\tan^(2)\theta), we proceed to simplify the formula until a form based exclusively in sines and cosines is found. From Trigonometry, we shall use the following identities:


\sec \theta = (1)/(\cos \theta) (1)


\tan\theta = (\sin\theta)/(\cos \theta) (2)


\cos^(2)+\sin^(2) = 1 (3)

Then, we simplify the given formula:


f(\theta) = (\left((1)/(\cos \theta) \right)\cdot \left((1)/(\cos \theta)+(\sin \theta)/(\cos \theta)\right) )/(1+(\sin^(2)\theta)/(\cos^(2)\theta) )


f(\theta) = \frac{\left((1)/(\cos^(2) \theta) \right)\cdot (1+\sin \theta)}{\frac{\sin^(2)\theta + \cos^2{\theta}}{\cos^(2)\theta} }


f(\theta) = (\left((1)/(\cos^(2)\theta)\right)\cdot (1+\sin \theta))/((1)/(\cos^(2)\theta) )


f(\theta) = 1+\sin \theta

If we know that
\sin \theta =(√(3)-1)/(2), then the approximate value of the given function is:


f(\theta) = 1 +(√(3)-1)/(2)


f(\theta) = (√(3)+1)/(2)


f(\theta) \approx 1.366

User Yu Mad
by
3.6k points