138k views
12 votes
C.
Find the value of x3 + 3x²y + 3xy2 + y when x = 3 and y = 4.
涨涨涨涨


User Hughesdan
by
3.6k points

1 Answer

7 votes

Answer:


x^3 + 3x\²y + 3xy^2 + y
=283


When\ x = 3\ and\ y = 4

Explanation:

Given


x^3 + 3x\²y + 3xy^2 + y

Required

Solve when x = 3 and y = 4

To do this, we simply substitute 3 for x and 4 for y in
x^3 + 3x\²y + 3xy^2 + y


3^3 + 3 * 3^2 * 4 + 3 * 3 * 4^2 + 4


27 + 3 * 9 * 4 + 3 * 3 * 16 + 4


27 + 108 + 144+ 4


283

Hence:


x^3 + 3x\²y + 3xy^2 + y
=283


When\ x = 3\ and\ y = 4

User Ipartola
by
4.1k points