147k views
1 vote
Please help!
what is the simplest form of the expression sqrt 2-sqrt 10/sqrt 2+sqrt 10

2 Answers

3 votes

Answer:


(1)/(2)(√(5)-3)

Explanation:

Given expression,


(√(2)-√(10))/(√(2)+√(10))

By rationalising the denominator,


=(√(2)-√(10))/(√(2)+√(10))*(√(2)-√(10))/(√(2)-√(10))


=((√(2)-√(10))^2)/((√(2))^2-(√(10))^2)

( ∵ ( a + b ) ( a - b ) = a² - b² )


=((√(2)-√(10))^2)/(2-10)


=(2+10-2√(20))/(-8)

( ∵ (a + b)² = a² + 2ab + b² )


=-(1)/(8)(12-4√(5))


=-(1)/(2)(3-√(5))


=(1)/(2)(√(5)-3)

User Psyrendust
by
7.5k points
3 votes

Answer:


√(2)-√(5)+√(10)

Explanation:

we have


√(2)-(√(10))/(√(2)) +√(10)

we know that


√(10)=√(2)*√(5)

substitute


√(2)-(√(2)*√(5))/(√(2)) +√(10)

simplify


√(2)-√(5)+√(10)

User Manoj De Mel
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories