89.0k views
0 votes

{x}^(18)={y}^(21)={z}^(28)

3,
3 log_y x,
3 log_z y and
7 log_x z are in?​

1 Answer

10 votes


\large\bold{\underline{\underline{Question:-}}}


{x}^(18)={y}^(21)={z}^(28)

3,
3 log_y x,
3 log_z y and
7 log_x z are in??


\large\bold{\underline{\underline{Answer:-}}}

The Series in AP.


\large\bold{\underline{\underline{Explanation:-}}}


{x}^(18)={y}^(21)={z}^(28)


{x}^(18)={y}^(21)

By taking LOG on both sides


log {x}^(18)=log {y}^(21)


18 log x= 21 log y


2 \ times 3 log x= 7 log y


3 (log x)/(log y) =(7)/(2)


\bold{ 3 log_y x =(7)/(2)}

Now,


{x}^(18)={z}^(28)

By taking LOG on both sides


log {x}^(18)=log {z}^(28)


18 log x =28 log z


9 log x =7 * 2 log z


7(log z)/(log x) = (9)/(2)


\bold{7 log_x z= (9)/(2)}

Now,


{y}^(21)={z}^(28)

By taking LOG on both sides


log {y}^(21)=log {z}^(28)


21 log y=28 log z


3 log y = 4 log z


3 ( log y)/(logz )= 4


\bold{ 3 log_z y = 4 }

According to the question:-

3,
3 log_y x,
3 log_z y and
7 log_x z are ...in??

we have,


\bold{ 3 log_y x =(7)/(2)}


\bold{7 log_x z= (9)/(2)}


\bold{ 3 log_z y = 4 }

The series is,


3 , \: (7)/(2 ) , \: 4 , \: (9)/(2)

Here,


a_1 = 3


a_2 = (7)/(2 )


a_3 = 4


a_2 = (7)/(2 )

Let, us find common difference


d \implies a_2 - a_1 = = a_3-a_2


d \implies 2 a_2 = a_3+a_1


d \implies 2 * (7)/(2)= 7


d \implies 7 = 7

Since, common difference is equal!

The series is in AP.

User LedgeJumper
by
3.8k points