Answer:

General Formulas and Concepts:
Algebra I
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ng1b0frayturcauvihrqe3qtb65llra87c.png)
Integrals
Integration Rule [Fundamental Theorem of Calculus 2]:
![\displaystyle (d)/(dx)[\int\limits^x_a {f(t)} \, dt] = f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rdhamrw118shgxvjh0ez7z0w0s9xcpsdwo.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Fundamental Theorem of Calculus 2 [Derivative Rule - Chain Rule]:
![\displaystyle g'(x) = (sin(√(x)))/(2√(x)) \cdot (d)/(dx)[√(x)]](https://img.qammunity.org/2020/formulas/mathematics/high-school/717t5vppu1edo1oxuf0ebg74egoa01k06g.png)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle g'(x) = (sin(√(x)))/(2√(x)) \cdot (d)/(dx) \bigg[ x^\bigg{(1)/(2)} \bigg]](https://img.qammunity.org/2020/formulas/mathematics/high-school/e2ev8up76rf7ywsz2lugx9e068jan1nrpz.png)
- Basic Power Rule:

- Simplify [Exponential Rule - Rewrite]:

- Rewrite [Exponential Rule - Root Rewrite]:

- Multiply:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e