167k views
3 votes
Pls Help. Need ASAP. Calculus question.

Pls Help. Need ASAP. Calculus question.-example-1
User VertigoRay
by
6.1k points

1 Answer

4 votes

Answer:


\displaystyle (sin(√(x)))/(4x)

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integrals

Integration Rule [Fundamental Theorem of Calculus 2]:
\displaystyle (d)/(dx)[\int\limits^x_a {f(t)} \, dt] = f(x)

Explanation:

Step 1: Define

Identify


\displaystyle g(t) = \int\limits^(√(x))_1 {(sin(t))/(2t)} \, dt

Step 2: Differentiate

  1. Fundamental Theorem of Calculus 2 [Derivative Rule - Chain Rule]:
    \displaystyle g'(x) = (sin(√(x)))/(2√(x)) \cdot (d)/(dx)[√(x)]
  2. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle g'(x) = (sin(√(x)))/(2√(x)) \cdot (d)/(dx) \bigg[ x^\bigg{(1)/(2)} \bigg]
  3. Basic Power Rule:
    \displaystyle g'(x) = (sin(√(x)))/(2√(x)) \cdot (1)/(2)x^\bigg{(1)/(2) - 1}
  4. Simplify [Exponential Rule - Rewrite]:
    \displaystyle g'(x) = (sin(√(x)))/(2√(x)) \cdot \frac{1}{2x^\bigg{(1)/(2)}}
  5. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle g'(x) = (sin(√(x)))/(2√(x)) \cdot (1)/(2√(x))
  6. Multiply:
    \displaystyle g'(x) = (sin(√(x)))/(4x)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Saeed Amiri
by
4.8k points