Answer:
Third option: x=0 and x=16
Explanation:
![√(2x+4)-√(x)=2](https://img.qammunity.org/2020/formulas/mathematics/college/elp7ut290fbsxchcsodxezn5aozye2uc04.png)
Isolating √(2x+4): Addind √x both sides of the equation:
![√(2x+4)-√(x)+√(x)=2+√(x)\\ √(2x+4)=2+√(x)](https://img.qammunity.org/2020/formulas/mathematics/college/7kffzpiev4kq5ck2a3oyuse6on4rbkltla.png)
Squaring both sides of the equation:
![(√(2x+4))^(2)=(2+√(x))^(2)](https://img.qammunity.org/2020/formulas/mathematics/college/h6d9jw2ddwa08ebyekbw8fxfhr7jws1jvf.png)
Simplifying on the left side, and applying on the right side the formula:
![(a+b)^(2)=a^(2)+2ab+b^(2); a=2, b=√(x)](https://img.qammunity.org/2020/formulas/mathematics/college/8h8xs6p9ifflr0xwmii6n40vbqk0c1wm4a.png)
![2x+4=(2)^(2)+2(2)(√(x))+(√(x))^(2)\\ 2x+4=4+4√(x)+x](https://img.qammunity.org/2020/formulas/mathematics/college/t7ex2fd1roj051ouhjwe80gfsj6ylwwszx.png)
Isolating the term with √x on the right side of the equation: Subtracting 4 and x from both sides of the equation:
![2x+4-4-x=4+4√(x)+x-4-x\\ x=4√(x)](https://img.qammunity.org/2020/formulas/mathematics/college/99xneviscmksyeohz65gcok4p4ge2fj83n.png)
Squaring both sides of the equation:
![(x)^(2)=(4√(x))^(2)\\ x^(2)=(4)^(2)(√(x))^(2)\\ x^(2)=16 x](https://img.qammunity.org/2020/formulas/mathematics/college/zd1px9jlb3c2uhc6xho0rkznn5eusilqzj.png)
This is a quadratic equation. Equaling to zero: Subtract 16x from both sides of the equation:
![x^(2)-16x=16x-16x\\ x^(2)-16x=0](https://img.qammunity.org/2020/formulas/mathematics/college/myzg8z2h6r9qp8nn4p2pnfvy0zb6x2mfmr.png)
Factoring: Common factor x:
x (x-16)=0
Two solutions:
1) x=0
2) x-16=0
Solving for x: Adding 16 both sides of the equation:
x-16+16=0+16
x=16
Let's prove the solutions in the orignal equation:
1) x=0:
![√(2x+4)-√(x)=2\\ √(2(0)+4)-√(0)=2\\ √(0+4)-0=2\\ √(4)=2\\ 2=2](https://img.qammunity.org/2020/formulas/mathematics/college/i261yo8w01y8cp6exf5odnf2yza7tqa49o.png)
x=0 is a solution
2) x=16
![√(2x+4)-√(x)=2\\ √(2(16)+4)-√(16)=2\\ √(32+4)-4=2\\ √(36)-4=2\\ 6-4=2\\ 2=2](https://img.qammunity.org/2020/formulas/mathematics/college/sgx3p2qr8y6sfdqrf92v4izh5sgjyqlaeo.png)
x=16 is a solution
Then the solutions are x=0 and x=16