97.7k views
2 votes
Find the value of k by
quardractic equation two real and equal roots
5x - 2kx +20=0​

2 Answers

13 votes

Explanation:

Given Equation

5x-2kx+20=0

  • If it has real and equal roots then


\boxed{\sf \longrightarrow D=0 }

  • Substitute the values


\\\qquad\quad\displaystyle\sf {:}\longrightarrow b^2-4ac=0


\\\qquad\quad\displaystyle\sf {:}\longrightarrow (-2k)^2-4* 5* 20=0


\\\qquad\quad\displaystyle\sf {:}\longrightarrow 4k^2-20* 20=0


\\\qquad\quad\displaystyle\sf {:}\longrightarrow 4k^2-400=0


\\\qquad\quad\displaystyle\sf {:}\longrightarrow 4k^2=400


\\\qquad\quad\displaystyle\sf {:}\longrightarrow k^2=\frac {400}{4}


\\\qquad\quad\displaystyle\sf {:}\longrightarrow k^2=100


\\\qquad\quad\displaystyle\sf {:}\longrightarrow k=√(100)


\\\qquad\quad\displaystyle\sf {:}\longrightarrow k=10


\therefore\sf k=10

User Potong
by
4.2k points
8 votes

Answer:

k = +10 or -10

Explanation:

It's given in the question that the roots of the eqn. are real and equal. So , the discriminant of the eqn. should be equal to 0.


= > {b}^(2) - 4ac = 0


= > {( - 2k)}^(2) - 4 * 5 * 20 = 0


= > 4 {k}^(2) - 400 = 0


= > 4( {k}^(2) - 100) = 0


= > {k}^(2) - 100 = 0


= > k = √(100) = + 10 \: or \: - 10

User Pushpendra Kumar
by
4.7k points