Answer:
W = 350
Explanation:
W varies jointly as X and Y and inversely as the square of Z.
That means W ∝

Or W =

Where k is the proportionality constant.
Now as per statement we will plug in the values
W = 280, X = 30, Y = 12 and Z = 3 to find the value of constant k
280 =

k =

k = 7
Now we plug in the values
X = 20, Y = 10, Z = 2 and K = 7 to find the value of W.
W =

=

= 350
Therefore, W = 350 is the answer.