127k views
5 votes
Una escalera de 13 pies de largo se recuesta a una pared, de forma que la base de la escalera se encuentra separada de la pared, al nivel del piso, a una distancia de 5 pies. Calcular la altura que llega la escalera en la pared. Recuerde que en un triángulo rectángulo, la hipotenusa, elevada al cuadrado, es igual a la suma de los cuadrados de los otros lados. De ser necesario aproxime a la décima de pie

User Richardtz
by
4.4k points

2 Answers

0 votes

Answer:


12\ ft

Explanation:

The question in English is

A 13-foot long staircase rests on a wall, so that the base of the staircase is separated from the wall, at floor level, at a distance of 5 feet. Calculate the height of the ladder on the wall. Remember that in a right triangle, the hypotenuse, squared, is equal to the sum of the squares on the other sides. If necessary, approach the tenth foot

Applying the Pythagoras Theorem


13^(2) =5^(2)+h^(2)

Solve for h


h^(2)=13^(2)-5^(2)


h^(2)=144


h=12\ ft

User Imanuelcostigan
by
5.2k points
2 votes

For this case we have that, the Pythagorean theorem states:


c = \sqrt {a ^ 2 + b ^ 2}

In this case we have to:


c = 13 \ feet\\b = 5 \ feet

We must find the height, that is, a.

Clearing we have:


a = \sqrt {c ^ 2-b ^ 2}

Substituting:


a = \sqrt {13 ^ 2-5 ^ 2}\\a = \sqrt {144}\\a = 12

So, we have that height is 12 feet.

ANswer:

12 feet

User Taylor Hughes
by
5.5k points