174k views
5 votes
If the parent function is y=1/x , describe the change in the equation y=1/x-5 -10

User Abdou
by
5.1k points

1 Answer

4 votes


\bf ~\hspace{10em}\textit{function transformations} \\\\\\ \begin{array}{llll} f(x)= A( Bx+ C)^2+ D \\\\ f(x)= A√( Bx+ C)+ D \\\\ f(x)= A(\mathbb{R})^( Bx+ C)+ D \end{array}\qquad \qquad \begin{array}{llll} f(x)=\cfrac{1}{A(Bx+C)}+D \\\\\\ f(x)= A sin\left( B x+ C \right)+ D \end{array} \\\\[-0.35em] ~\dotfill\\\\ \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis}


\bf \bullet \textit{ flips it sideways if } B\textit{ is negative}\\ ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }( C)/( B)\\ ~~~~~~if\ ( C)/( B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ ( C)/( B)\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by } D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }(2\pi )/( B)


with that template in mind.


\bf \stackrel{parent}{y = \cfrac{1}{x}}\qquad \qquad y=\cfrac{1}{x+\underset{\underset{-5}{\uparrow }}{C}}+\stackrel{\stackrel{-10}{\downarrow }}{D}\implies \cfrac{1}{x-5}-10


C = -5................. horizontal shift to the right of 5 units.

D = - 10.............. vertical shift downwards of 10 units.

User Roolebo
by
4.9k points