Solution:
Area of Quadrilateral ACDO= Area (ΔAOD)+Area(ΔACD)-----(1)
Area of Quadrilateral ABDO= Area (ΔAOD)+Area(ΔABD)------(2)
⇒ (1) = 5 ×(2)→→→→GIven
→Area (ΔAOD)+Area(ΔACD)=5 Area (ΔAOD)+5 Area(ΔABD),
→5 Area (ΔABD)+4 Area (ΔAOD)-Area (ΔACD)=0-----(3)
As, Area of a Triangle
![={\text{having vertices}} (x_(1),y_(1)),(x_(2),y_(2)) {\text{and}} (x_(3),y_(3))=(1)/(2)*[x_(1)(y_(2)-y_(3))-x_2(y_(3)-y_(1))+x_(3)(y_(1)-y_(2))]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sc0eq75j6e2rmxmn2wqwp41b7ufmprzcur.png)
Area (ΔACD)
![=(1)/(2)[0(y-0)-4(0-3)+4(3-y)]\\\\= (1)/(2)[12+12-4y]\\\\=12-2 y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mw8ubom2yjcn97l3z0447d40712yf14usq.png)
Area (ΔABD)
![=(1)/(2)[0(4-0)-4(0-3)+4(3-4)]\\\\ =(1)/(2)[12-4]=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/upnd8fs07bxb1fzo4ugg808yctfr8gctua.png)
Area (ΔAOD)
![=(1)/(2)[0(3-0)-0(0-0)+4(0-3)]=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/47aeszy4rzb4hs6hr84mlzirta5cpxft6a.png)
Putting these values in equation (3)
→20+24-12+2 y=0
→ 2 y= -32
Dividing both sides by , 2 we get
→y= -16