10.0k views
22 votes
use the matrix tool to solve the system of equations choose the correct ordered pair4x-y=10 and 8x+5y=34

1 Answer

5 votes

Answer:


\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}3\\2\\\end{array}\right]

Solution of the given system of equations

x = 3 and y= 2

Explanation:

Step(i):-

Given system of equations are

4x - y = 10 ...(i)

8x +5y = 34...(ii)

The matrix form

A X = B


\left[\begin{array}{ccc}4&-1\\8&5\\\end{array}\right] \left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}10\\34\\\end{array}\right]

Step(ii):-

By using matrix inversion method


A^(-1) = (1)/(|A|) adj A

|A| = ad-b c = 4(5) - 8(-1) = 20+8 = 28

Given matrix


A = \left[\begin{array}{ccc}4&-1\\8&5\\\end{array}\right]


AdjA = \left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right]


A djA = \left[\begin{array}{ccc}5&1\\-8&4\\\end{array}\right]

Inverse of the matrix


A^(-1) = (1)/(|A|) adj A


A^(-1) = (1)/(|A|) A djA =(1)/(28) \left[\begin{array}{ccc}5&1\\-8&4\\\end{array}\right]

Step(iii):-

The solution of the given system of equations by using matrix inversion method

X = A⁻¹ B


X = A^(-1)B =(1)/(28) \left[\begin{array}{ccc}5&1\\-8&4\\\end{array}\right]\left[\begin{array}{ccc}10\\34\\\end{array}\right]


X = A^(-1)B =(1)/(28) \left[\begin{array}{ccc}5X10+1X34\\-8X10+4X34\\\end{array}\right]


\left[\begin{array}{ccc}x\\y\\\end{array}\right] =(1)/(28) \left[\begin{array}{ccc}84\\56\\\end{array}\right]


\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}3\\2\\\end{array}\right]

Final answer:-

Solution of the given system x = 3 and y= 2

User Ricky Clarkson
by
6.3k points